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The paper presents a computational investigation on the effects of subtended
and vertex angles on the free vibration characteristics of open conical shell panels.
Unlike the conventional approximation using a rectangular or cylindrical
co-ordinate system, this analysis adopts a natural conical co-ordinate system so
that any approximation in geometry is eliminated. The strain and curvature
components formulated in this orthogonal conical co-ordinate system have been
employed to derive the strain and kinetic energy integrals. The energy functional
is minimized in accordance with the Ritz procedure to arrive at a governing
eigenvalue equation. Admissible shape functions comprising sets of two-dimen-
sional orthogonal polynomials and a basic function are employed to account for
the boundary constraints and to approximate the three-dimensional displacements
of the conical shell. Comparison of natural frequencies shows excellent agreement
with the solutions of finite element, finite strip and integral equation methods. The
effects of subtended and vertex angles and other geometric parameters on
vibration are investigated in a comprehensive parametric study. Selected vibration
mode shapes are illustrated to enhance the physical understanding of vibration of
such open conical shell panels.
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1. INTRODUCTION

There has been extensive use of conical shell panels and conical frustums in various
engineering applications such as aircraft structures, turbomachinery blades,
cooling towers and jet nozzles. The vibration characteristics are of critical
importance to the performance and safety of these structures. A thorough
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analytical understanding of the resonant properties of these shells is therefore
significant and important.

In respect of turbomachinery blades, the conical shell panel has rarely been used
as a model in analysis [1–6] although as an approximation it is much superior to
the conventional beam, plate and shallow shell models. Actual turbomachinery
blades feature not only pretwist and thickness variation, but most importantly
spanwise variable radius and variable deep curvature. Conventional models
including beams, plates and shallow shells can be formulated to incorporate the
effects of pretwist and thickness variation [7–17], but it is impossible to include
spanwise variable radius and curvature due to the geometric deficiency of
the models. Most early works employed a one-dimensional beam theory
approach [1–3] which is only justifiable provided the structures are slender or only
lower vibration modes are required. The two-dimensional plate and shallow shell
models with and without pretwist and thickness variation have been reported in
numerous publications [4–17]. These analyses, however, neglected the variable
radius and variable deep surface curvature. Although a general variable strain and
change of curvature formulation has been presented by Lee et al. [18], numerical
solutions presented were restricted to plates and cylindrical shells with zero and
constant surface curvature. To the authors’ knowledge, the only reported conical
shell modelling of turbomachinery blades has been by Lim and Liew and their
co-workers [19–24]. Unfortunately, these are shallow conical shell analyses which
are geometrically insufficient in a realistic and rigorous effort to model an actual
turbomachinery blade. As a result, a conical shell model featuring variable radius,
deepness and variable curvature is inevitable to realistically model turbomachinery
blades.

On the other hand, there have been several studies of the vibration analysis of
closed conical shells [6, 7, 25, 26]. Despite the practical importance, there are very
few references dealing with open conical shell panels. Besides the authors’ work
on shallow conical shell panels [19–24], vibration solutions for open conical shell
panels have been presented by Srinivasan and Krishnan [27] using an integral
equation approach; by Cheung et al. [28] using a spline finite strip method; and
by Lim et al. [29] using a Ritz method in a conical co-ordinate system. This paper,
in fact, is an extension of the paper presented by Lim et al. [29] at the Fifth Pan
American Congress of Applied Mechanics.

The fact that there are relatively few publications on the free vibration analysis
of open conical shell panels is partly due to the mathematical complexity in
geometry and partly due to the variable large surface curvature. However,
mathematical and geometry complexity only arise if a non-natural co-ordinate
system, such as the Cartesian co-ordinate system, is adopted. To account for this
difficulty, a natural conical co-ordinate system similar to that of Leissa and So [26]
is used to derive the strain and curvature components based on the shell theory
of Gol’denveizer [30] and Novozhilov [31]. The strain and kinetic energy integrals
in this conical system are formulated and the Ritz energy functional is minimized
to derive a governing eigenvalue equation. A set of admissible p-Ritz shape
functions [15–17, 19–24, 29, 32, 33] is introduced to approximate the transverse
and in-plane displacement amplitude functions. These shape functions are
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composed of the product of sets of two-dimensional polynomials and appropriate
basic functions. The basic functions are associated with piecewise boundary
expressions of the structure raised to an appropriate basic power and satisfy the
geometric boundary conditions at the outset. Consequently, this approach is
highly versatile in accommodating various boundary conditions. Unlike the finite
element and finite strip methods, numerical formulation and computational
implementation can be greatly simplified because no mesh generation is needed.
Furthermore, only relatively small amounts of computational memory and
execution time are required and yet accurate solutions can be achieved.

In this study, the consistency of the numerical approach is verified through a
convergence study to demonstrate the existence of upperbound eigenvalues. A
comparison study with some available data and finite element solutions is included
to authenticate the accuracy and reliability of the present approach. To enhance
existing literature, a comprehensive set of first known non-dimensional frequency
parameters is presented showing the effects of subtended and vertex angles on free
vibration of open conical shell panels. Selected vibration mode shapes are also
illustrated to visualize the displacement amplitude.

2. ENERGY FUNCTIONAL

Consider a homogeneous, isotropic, thin open conical shell panel with slanting
length of panel (or reference length) l0, slanting length of cone (L+ l0), thickness
h, reference radius R0 perpendicular to the conical midsurface (not in the plane
of cone base) as the normal distance from conical midsurface to the cone axis, half
vertex angle uv and subtended angle u0 as shown in Figure 1. An orthogonal conical
co-ordinate system (r, u, l) is defined whether r is the normal distance from the
conical midsurface parallel to R, u is the circumferential angle measured in a plane
perpendicular to the cone axis, and l is the distance from a reference point of
midsurface along a meridian. The displacements of the conical midsurface are

Figure 1. Geometry of a conical shell panel.
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resolved into three orthogonal components ur , uu and ul . The radius R varies
linearly with respect to l and the relation is

R=Ro −(lo − l) tan uv . (1)

From the strain–displacement expressions of Gol’denveizer [30] and Novozhilov
[31] which is valid for an arbitrary orthogonal coordinate system and deepness of
shell, the following strain– and curvature–displacement relationships are derived,

eu =
1

R cos uv

1uu

1u
+

tan uv

R
ul +

ur

R
, el =

1ul

1l
, (2.1, 2)

eul =
1

R cos uv

1ul

1u
+

1uu

1l
−

tan uv

R
uu , (2.3)

ku =
1

R2 cos uv

1uu

1u
−

1
R2 cos2 uv

12ur

1u2 −
tan uv

R
1ur

1l
, kl =−

12ur

1l2
, (2.4, 5)

t=
1
R

1uu

1l
−

tan uv

R2 uu −
1

R cos uv

12ur

1u 1l
+

tan uv

R2 cos uv

1ur

1u
. (2.6)

For small amplitude vibration, the total strain energy, U, is given by [7, 18, 31]

U=Us +Ub , (3)

where Us is the membrane stretching strain energy and Ub is the bending strain
energy. The strain energy components can be expressed as

Us =
6D
h2 gg

A
$e2

u + e2
l +2neuel +

1− n

2
e2

ul%R cos uv du dl, (4.1)

Ub =
D
2 gg

A
$k2

u + k2
l +2nkukl +2(1− n)t2]R cos uv du dl, (4.2)

where the flexural rigidity D=Eh3/12(1− n2), E is Young’s modulus, and n the
Poisson’s ratio. The double integration above covers the entire conical midsurface
A.

The kinetic energy is given by [7, 18, 31]

T=
rh
2 gg

A
$01uu

1t 1
2

+01ul

1t1
2

+01ur

1t 1
2

%R cos uv du dl, (5)

where r is the mass density per unit volume.
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For a non-dissipative system, the maximum stretching strain components in a
vibrating cycle can be derived by substituting equations (2.1–6) into equations
(4.1, 2) as

(Us )max =
6D
h2 gg 6 1

R cos uv 01Uu

1u 1
2

+
sin uv tan uv

R
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l +
cos uv

R
U2

r
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1u
Ul +

2
R
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Ur +

2 sin uv
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UlUr +R cos uv01Ul
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2
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while the maximum kinetic energy in a vibrating cycle is

Tmax =
rhv2 cos uv

2 gg R(U2
u +U2

l +U2
r ) du dl (7)

where v is the angular frequency.
The displacement amplitude functions Uu (u, l), Ul (u, l) and Ur (u, l) can be

approximated by the following two-dimensional polynomial functions

Uu (u, s)= s
m

i=1

Ci
uf

i
u(u, l), Ul (u, l)= s

m

i=1

Ci
lf

i
l(u, l), (8.1, 2)

Ur (u, l)= s
m

i=1

Ci
rf

i
r(u, l), (8.3)

where Ci
u, Ci

l and Ci
r are the unknown coefficients and fi

u, fi
l and fi

r are the
corresponding p-Ritz shape functions to be introduced in due course.

For simplicity and generality, a non-dimensional conical midsurface co-ordinate
system (u�, l�) is further introduced as

u�= u/u0, l�= l/l0, (9.1, 2)

such that u� and l� range from [−0·5, 0·5] and [0, 1] respectively. The displacement
amplitude functions (8.1–3) can be expressed in these non-dimensional
co-ordinates. Similarly, the strain and kinetic energy components in equations
(6.1, 2) and (7) can also be expressed in these non-dimensional conical midsurface
co-ordinates.

In accordance with the Ritz procedure, an energy functional P defined as

P=Umax −Tmax (10)

is minimized with respect to the unknown coefficients

1P/1Ci
a =0; a= u, l and r, (11)

which yields a governing eigenvalue equation as follows

(K− l2M){C}= {0}, (12)

where

l=vl20zrh/D (13)
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is the non-dimensional frequency parameter. The stiffness and mass matrices are

K= & kuu

sym

kul

kll

kur

klr

krr', M= &Muu

sym

[0]
mll

[0]
[0]
mrr' (14, 15)

and the vector of unknown coefficients is

C= 8{Cu}
{Cl}
{Cr}9, (16)

where the elements in the stiffness matrix are

kij
uu =

6l20
h2 $2h2

u2
0

Iij(1010;−1)
uu +(1− n)Iij(0101;1)

uu +(1− n)h2 sin2 uvIij(0000;−1)
uu

− (1− n)h sin uv (Iij(0100;0)
uu + Iij(0001;0)

uu )%+
l20h2

R2
0u

2
0
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uu

+
2(1− n)l20

R2
0
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uu − h sin uv (Iij(0100;−2)

uu + Iij(0001;−2)
uu )

+ h2 sin2 uvIij(0000;−3)
uu ], (17.1)

kij
ul =

6l20h
h2u0

[2h sin uvIij(1000;−1)
ul +2nIij(1001;0)

ul +(1− n)Iij(0110;0)
ul

− (1− n)h sin uvIij(0010;−1)
ul ] (17.2)

kij
ur =

12l30h
h2R0u0

Iij(1000;−1)
ur −

l0h2

R0u0 $ h

u2
0
Iij(1020;−3)

ur +sin uvIij(1001;−2)
ur %

−
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R0u0

Iij(1002;−1)
ur +

2(1− n)l0h
R0u0

[−Iij(0111;−1)
ur + h sin uvIij(0110;−2)

ur

+ h sin uvIij(0011;−2)
ur − h2 sin2 uvIij(0010;−3)

ur )], (17.3)

kij
ll =

6l20
h2 $2h2 sin2 uvIij(0000;−1)

ll +2Iij(0101;1)
ll

+ 2nh sin uv (Iij(0100;0)
ll + Iij(0001;0)

ll )+
(1− n)h2

u2
0

Iij(1010;−1)
ll %, (17.4)

kij
lr =
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h2R0

[h sin uvIij(0000;−1)
lr + nIij(0100;0)

lr ], (17.5)
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kij
rr =

12l40
h2R2

0
Iij(0000;−1)

rr +
h4

u4
0
Iij(2020;−3)

rr + h2 sin2 uvIij(0101;−1)
rr +

h3 sin uv

u2
0

(Iij(2001;−2)
rr

+ Iij(0120;−2)
rr )+ Iij(0202;1)

rr +
nh2

u2
0

(Iij(0220;−1)
rr + Iij(2002;−1)

rr )

+ nh sin uv (Iij(0201;0)
rr + Iij(0102;0)

rr )+
2(1− n)h2

u2
0

[Iij(1111;−1)
rr

− h sin uv (Iij(1011;−2)
rr + Iij(1110;−2)

rr )+ h2 sin2 uvIij(1010;−3)
rr ]. (17.6)

and the elements in the mass matrix are

mij
uu = Iij(0000;1)

uu , mij
ul =0, mij

ur =0, mij
ll = Iij(0000;1)

ll , (18.1–4)

mij
lr =0, mij

rr = Iij(0000;1)
rr , (18.5, 6)

in which

h=
l0

R0 cos uv
, Iij(abcd;e)

ab =gg
A�

1a+ bfi
a(u�, l�)

1u�a 1l�b

1c+ dfj
b(u�, l�)

1u�c 1l�d R� e du� dl�, (19.1, 2)

where A� is the normalized conical midsurface area;

R� =1−(l0/R0)(1− l�) tan uv (20)

is the dimensionless radius; a, b= u, l, r; i, j=1, 2, . . . , m and m is the total
number of terms employed in the p-Ritz shape functions. The derivatives of strain
and kinetic energy integrals with respect to the unknown coefficients for equation
(11) are derived in the Appendix.

3. ADMISSIBLE SHAPE FUNCTIONS

The displacement components in midsurface denoted by Uu , Ul and Ur are
approximated by a finite series given in equations (8.1–3). Their corresponding
admissible shape functions fu , fl and fr are sets of geometrically compliant
two-dimensional polynomials derived such that the geometric boundary
conditions are satisfied at the outset. They are composed of the product of a series
of simple two-dimensional polynomials F0 and boundary compliant basic
functions fb

a (a= u, l and r). The latter are geometric expressions of the conical
panel boundary raised to an appropriate basic power in accordance with various
boundary constraints. Accordingly, the admissible shape functions are

fa =F0(u�, l�)fb
a , F0(u�, l�)= s

p

q=0

s
q

i=0

u�q− il�i, a= u, l or r (21.1–3)

where p is the highest degree of polynomial in the functions, m is the number of
terms and they are related by m=(p+1)(p+2)/2. The series F0 can be
determined easily by constructing a Pascal polynomial triangle [32].
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For convenience, F, S and C are used to denote free, simply supported and
clamped boundaries respectively. A CSFC shell represents a shell panel with two
clamped boundaries along u�=−0·5 and l�=1·0; a simply supported boundary
along l�=0; and a free boundary along u�=0·5. For conical shell panels with
symmetric geometry and boundary constraints, it is possible to classify the
vibration modes into two symmetry classes with respect to the lr-plane. For
instance, the vibration modes of a fully clamped CCCC conical panel can be
classified into symmetric (S) and antisymmetric (A) modes. As a result, F0(u�, l�) can
be subdivided into odd and even functions in terms of powers of u�:

F0(u�, l�)=F1(u�e , l�)+F2(u�0, l�), (22)

where u�e and u�0 denote polynomial functions with even and odd powers of u�
respectively, and

F1(u�e , l�)= s
p

q=0

s
q

i=0,2,4, . . .

u�i l�q− i, F2(u�o , l�)= s
p

q=0

s
q

i=1,3,5, . . .

u�i l�q− i. (23.1, 2)

The corresponding admissible shape functions are

fa =F1(u�e , l�)fb
a ; symmetric wrt lr-plane; (24.1)

fa =F2(u�0, l�)fb
a ; antisymmetric wrt lr-plane; (24.2)

where a= u, l or r.

The subdivision of two-dimensional functions according to various symmetry
classes for the displacements has been presented by Lim et al. [32, 33]. The
corresponding number of terms for each symmetry class with respect to the highest
polynomial power has also been tabulated [32, 33].

The boundary compliant basic functions fb
a (a= u, l or r) are defined as the

product of the equations of continuous piecewise boundary geometries raised to
an appropriate basic power that corresponds to the type of boundary constraint,
i.e.,

fb
u(u�, l�)= t

4

i=1

[Yi (u�, l�)]gi
u, gi

u =601 free;
simply supported or clamped;7 (25.1)

fb
l (u�, l�)= t

4

i=1

[Yi (u�, l�)]gi
l, gi

l =601 free;
simply supported or clamped;7, (25.2)

fb
r (u�, l�)= t

4

i=1

[Yi (u�, l�)]gi
r, gi

r = 8012 free;
simply supported;9,clamped.

(25.3)
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T 1

Convergence and comparison of l=vl20z(rh/D) for a fully clamped deep conical
shell panel with n=0·3, l0/(L+ l0)=0·6 and l0/h=100

Mode sequence number
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

uv u0 p S-1 S-2 S-3 S-4 A-1 A-2 A-3 A-4

30° 30° 9 399·58 470·93 546·30 626·27 491·66 631·42 767·63 915·36
11 399·57 470·91 546·20 625·65 491·51 630·53 764·16 900·32
13 399·57 470·91 546·19 625·58 491·51 630·48 763·38 897·30
15 399·57 470·91 546·19 625·57 491·50 630·47 763·31 897·06

60×60† 398·22 468·26 541·95 619·28 484·71 618·86 746·08 873·22
45° 9 341·01 413·20 479·85 481·34 275·97 381·65 481·54 582·70

11 341·01 413·18 479·71 481·26 275·95 381·26 479·26 578·62
13 341·01 413·18 479·70 481·25 275·95 381·24 479·16 578·02
15 341·01 413·18 479·70 481·25 275·95 381·24 479·15 577·96

60×60† 339·15 411·03 475·85 478·10 274·21 377·75 473·34 569·14
60° 9 256·55 351·26 401·37 435·30 209·73 307·80 400·00 423·91

11 256·54 351·21 401·22 435·14 209·71 307·60 397·89 420·90
13 256·54 351·21 401·21 435·13 209·71 307·59 397·71 420·52
15 256·54 351·21 401·21 435·12 209·71 307·59 397·70 420·50

60×60† 254·84 348·22 399·87 431·53 208·99 305·83 394·54 416·15
7×7‡ 266·1 358·3 – – 195·1 300·7 399·3 –
9×9‡ 260·1 355·0 – – 202·7 305·6 402·9 –
8×6§ 263·7 361·5 – – 214·2 317·6 – –

12×6§ 262·5 358·6 – – 213·4 314·7 – –

45° 30° 9 237·55 289·94 347·36 410·62 276·89 374·35 470·89 573·28
11 237·54 289·93 347·34 410·52 276·87 374·05 469·99 570·01
13 237·54 289·93 347·34 410·52 276·86 374·04 469·95 569·54
15 237·54 289·93 347·34 410·52 276·86 374·04 469·94 569·49

60×60† 237·05 288·92 345·61 407·67 274·71 369·98 463·46 559·99
45° 9 202·37 257·07 277·20 309·58 166·30 241·36 315·96 371·96

11 202·37 257·07 277·17 309·57 166·30 241·32 315·32 370·61
13 202·37 257·07 277·17 309·57 166·30 241·32 315·29 370·45
15 202·37 257·07 277·17 309·57 166·30 241·32 315·28 370·43

60×60† 201·62 256·23 275·85 308·32 165·72 240·00 312·86 366·64
60° 9 153·61 223·76 239·28 282·44 137·43 207·64 242·71 278·56

11 153·61 223·74 239·23 282·43 137·42 207·44 241·31 278·10
13 153·61 223·74 239·23 282·43 137·42 207·44 241·23 278·06
15 153·60 223·74 239·23 282·43 137·42 207·44 241·23 278·06

60×60† 153·01 222·56 238·70 281·49 137·17 206·62 239·81 276·56

† NASTRAN finite element solutions; ‡ Srinivasan and Krishnan [27], integral equation approach;
§ Cheung et al. [28], finite strip method.

where Yi is the geometric boundary expression of the ith supporting edge. For
instance, the basic functions for a CCCC open conical panel are

fb
u =(u�2 −0·25)l�(l�−1), fb

l =(u�2 −0·25)l�(l�−1), (26.1, 2)

fb
r =(u�2 −0·25)2 l�2(l�−1)2. (26.3)
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4. RESULTS AND DISCUSSION

Table 1 presents a convergence and comparison study of vibration frequencies
for a fully clamped (CCCC) open conical shell panel. Vibration solutions of this
panel were obtained by Srinivasan and Krishnan [27] using an integral equation
approach and by Cheung et al. [28] using a spline finite strip method. To
demonstrate the convergence of eigenvalues, the degree of polynomial functions
in equations (23.1, 2) has been increased from 9 to 15. For symmetric modes as
governed by equation (23.1), the total number of terms is m=30 for p=9 and
m=72 for p=15 while for antisymmetric modes m=25 and m=64 respectively.
If no classification of modes is performed, m=136 would be needed for p=15.
It has been investigated by Lim et al. [32, 33] that tremendous numerical effort
(ranging from 40% to 65% for single symmetry classification) can be saved
accounting for the total execution period for both cases.

Downward convergence of eigenvalues is demonstrated in Table 1. It is expected
because the Ritz method always overestimates stiffness, vibration frequency and
buckling load and underestimates deflection. Accurate solutions can be obtained
by including an adequate number of terms in the admissible polynomial shape
functions. As observed in Table 1, p=15 is able to justify converged eigenvalues
up to four significant digits in most cases. Consequently, p=15 has been used in
all subsequent numerical computation. Table 1 also exhibits excellent agreement
between solutions obtained by Srinivasan and Krishnan [27] and Cheung et al. [28]
using different numerical methods. It is obvious that convergence of solutions of
Srinivasan and Krishnan [27] and Cheung et al. [28] is not very satisfactory as can
be seen in Table 1 for the two different meshes. To further verify the accuracy of
the current conical co-ordinate approach, finite element solutions have been
obtained using NASTRAN with 60×60 4-noded plate elements. Convergence of
finite element solutions has been tested and, again, excellent agreement of solutions
has been demonstrated.

Another comparison of non-dimensional frequency parameter l with the
solutions of Cheung et al. [28] is presented in Figures 2 and 3 for a CCCC conical
shell panel with n=0·3, (L+ l0)/h=400, u0 =30°, uv =30° and 45°, respectively.
The frequency modes have been classified as symmetric (S) or antisymmetric (A)
with respect to the lr-plane in accordance with equation (24.1, 2). Two modes in
each class have been shown in the figures. It should be emphasized that numerical
solutions of Cheung et al. [28] are not available but rather the results were
presented in graphical logarithmic scales. Direct hand measurement from the
figures was extremely crude and, therefore, the authors would suggest a 5–10%
measurement tolerance. Comparison of solutions within a 10% difference would
be deemed acceptable. In these figures, excellent agreement of solutions is achieved
considering the crude data extracted manually from Cheung et al. [28].

In another comparison in Figure 4, NASTRAN finite element solutions have
been obtained using 4-noded plate elements for a conical shell panel with n=0·3,
l0/h=100, u0 =30° and uv =30°. Different mesh sizes have been employed in the
finite element analysis with meshes 60×30 for l0/(L+ l0)=0·2; 60×40 for
l0/(L+ l0)=0·3; 60×50 for l0/(L+ l0)=0·4; and 60×60 for l0/(L+ l0)=0·5,
0·6, 0·7 and 0·8. Although the mesh size varies, convergence of finite element
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Figure 2. Comparison of frequency parameter l for a CCCC conical shell panel with n=0·3,
(L+ l0)/h=400, u0 =30° and uv =30°. Key for Cheung et al. results [28]: w, S-1; e, S-2; q, A-1;
r, A-2.

Figure 3. Comparison of frequency parameter l for a CCCC conical shell panel with n=0·3,
(L+ l0)/h=400, u0 =30° and uv =45°. Key as for Figure 2.
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Figure 4. Comparison of frequency parameter l for a CCCC conical shell panel with n=0·3,
l0/h=100, u0 =30° and uv =30°. Key for FEM solution (NASTRAN) as for Figure 2.

Figure 5. Frequency parameter l for a CCCC conical shell panel with n=0·3, l0/h=100, u0 =30°
and uv =45°.
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Figure 6. Frequency parameter l for a CCCC conical shell panel with n=0·3, l0/(L+ l0)=0·3,
(L+ l0)/h=400 and uv =30°.

Figure 7. Frequency parameter l for a CCCC conical shell panel with n=0·3, l0/(L+ l0)=0·3,
(L+ l0)/h=400 and uv =45°.
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Figure 8. Frequency parameter l for a CCCC conical shell panel with n=0·3, l0/(L+ l0)=0·5,
(L+ l0)/h=400 and uv =30°.

Figure 9. Frequency parameter l for a CCCC conical shell panel with n=0·3, l0/(L+ l0)=0·5,
(L+ l0)/h=400 and uv =45°.
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solutions has been checked in all cases. Again, excellent comparison of solutions
has been achieved.

The effects of varying cone length and vertex angle can be observed in Figures 4
and 5 which present the non-dimensional frequency parameter for open conical
shell panels with n=0·3, l0/h=100, u0 =30°, uv =30° and 45°, respectively. The
physical thickness h is not unchanging but rather the thickness ratio l0/h is constant
while l0/(L+ l0) is varying. For a conical panel with a smaller vertex angle
(2uv =60°), the fundamental vibration mode is antisymmetric (A-1) with respect
to the lr-plane when the panel is short (l0/(L+ l0)=0·2). This fundamental mode
switches from antisymmetric (A-1) to symmetric (S-1) when the panel becomes
longer, or, when l0/(L+ l0) gradually increases from 0·2 to 0·8. The crossing of
the lowest symmetric and antisymmetric modes occurs at l0/(L+ l0)1 0·44.
Because all sides of the shell panel are clamped, it implies that it is too stiff for
a short conical shell panel (l0/(L+ l0)Q 0·44 approximately) with 2uv =60° to
vibrate in a half-wavelength mode (S-1) than a full-wavelength mode (A-1) in the
circumferential u-direction, as can be seen in vibration mode shape diagrams
discussed in due course. For a long conical shell panel (l0/(L+ l0)q 0·44
approximately), it is more flexible to vibrate in a half-wavelength mode (S-1) than
a full-wavelength mode (A-1) in the circumferential u direction. Not all S-1
vibration modes correspond to one half-wavelength mode and not all A-1
vibration modes correspond to one full-wavelength mode (equivalent to two
half-wavelengths) as they could correspond to odd multiples of half-wavelengths
(such as 3 half-wavelengths) and even multiples of half-wavelengths (such as 4
half-wavelengths). Examples will be illustrated in vibration mode shapes figures.

Similar trends have also been observed in Figure 5 for a conical panel with a
large vertex angle (2uv =90°). The switching of the lowest symmetric and

Figure 10. Vibration frequencies and mode shapes for a CCCC conical shell panel with n=0·3,
l0/(L+ l0)=0·3 and (L+ l0)/h=400.
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Figure 11. Vibration frequencies and mode shapes for a CCCC conical shell panel with n=0·3,
l0/(L+ l0)=0·5 and (L+ l0)/h=400.

antisymmetric modes occurs at l0/(L+ l0)1 0·46. From Figures 4 and 5, it can also
be deduced that the fundamental l (either S-1 or A-1) is higher for a conical shell
panel with a smaller vertex angle. In other words, increasing the vertex angle
decreases the vibration frequency parameters.

For conical shell panels with constant physical thickness h, the effects of
changing the vertex (uv ) and subtended (u0) angles are presented in Figures 6–9.
It is apparent that in all cases the fundamental modes are symmetric for conical
panels with a small u0 (=10°) and these fundamental modes switch from symmetric
to antisymmetric at u0 1 22°. The fundamental modes again switch back to
symmetric modes at a larger angle depending on the shell geometry. Apparently,
l for all vibration modes decreases when u0 increases implying a less stiff wider
panel compared to a narrower panel. Comparing Figures 6 (uv =30°) and 7
(uv =45°) as well as Figures 8 (uv =30°) and 9 (uv =45°), the frequency parameters
are generally higher for conical panels with a smaller vertex angle. From Figures 6
(l0/(L+ l0)=0·3) and 8 (l0/(L+ l0)=0·5) as well as Figures 7 (l0/(L+ l0)=0·3)
and 9 (l0/(L+ l0)=0·5), it is again observed that a longer conical shell panel has
higher vibration frequencies.

A set of vibration frequencies and midsurface displacement amplitude mode
shapes for a CCCC conical shell panel with n=0·3, (L+ l0)/h=400,
l0/(L+ l0)=0·3 and 0·5 is illustrated in Figures 10 and 11, respectively. Symmetric
(S) and antisymmetric (A) mode shapes with respect to the lr-plane can be
observed. Four modes corresponding to S-1, S-2, A-1 and A-2 modes are
illustrated. Nodal lines with zero vibration amplitude can be observed. For
instance, the S-1 and S-2 modes with uv =30° and u0 =30° have no nodal line and
one spanwise (u-direction) nodal line, respectively, while the corresponding A-1
and A-2 modes have one lengthwise (l-direction) nodal line and two nodal lines
(one lengthwise and one spanwise), respectively. The number of nodal lines
increases for higher vibration modes. As discussed above, not all fundamental
modes correspond to either a half-wavelength or a full-wavelength in the spanwise
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or circumferential direction. This phenomenon happens especially when the
subtended angle is large (u0 =60°). An example for the S-1 mode with uv =30°
and u0 =60° is observed in Figure 10 where it has three spanwise half-wavelengths
while the corresponding A-1 mode has two spanwise full-wavelengths.

5. CONCLUSIONS

A new approach using an orthogonal conical co-ordinate system in conjunction
with the Ritz extremum energy method has been formulated to investigate the free
vibration of open conical shell panels. Expressions for strain–displacement,
curvature–displacement relationships and strain–kinetic energy functional have
been derived in this conical co-ordinate system. The kinematically oriented p-Ritz
shape functions previously developed in plate and shell analyses in Cartesian
co-ordinate system by the authors have been extended to this conical co-ordinate
system. Geometric and mathematical deficiency and complexity in conventional
co-ordinate systems dealing with conical panels have been completely eliminated
as this new and natural conical co-ordinate system presents an exact geometric
representation.

Convergence of eigenvalues has been verified and excellent agreement has been
achieved with available published data and NASTRAN finite element solutions.
The effects of length ratio, vertex and subtended angles have also been examined
and discussed. A set of new results for a wide range of subtended angle and length
ratio has been presented. It is not necessary for a fundamental symmetric (or
antisymmetric) mode to vibrate in a one half-wavelength (or one full-wavelength)
mode in the circumferential direction and the nature of vibration modes depends
on the vertex angle. Furthermore, the fundamental mode also switches from a
symmetric mode to an antisymmetric mode, or vice versa, depending on the cone
length, subtended and vertex angles. It has been observed that there is a tendency
for an open conical panel with a larger vertex angle to vibrate with a lower
frequency parameter. To enhance the physical understanding of vibration modes,
selected displacement amplitude mode shapes have been illustrated and analysed.
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APPENDIX

The derivatives of strain and kinetic energy integrals with respect to the
unknown coefficients for equation (11) are as follows
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where the integral notation Iij(abcd;e)
ab is given in equation (19.2).
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